跳转至

函数列与函数项级数

课程 Statistical Modelling
作者 Guangyu Wei
发布 2025-06-17
状态 Done

Info

数学分析习题

Question

讨论下列函数列或函数项级数在所示区间\(D\)上的一致收敛性:

\[\sum_{n=1}^{\infty}\frac{sin nx}{n},D = (0,2\pi)\]

Note

一致收敛的柯西准则:函数项级数\(\sum u_n(x)\)在数集\(D\)上一致收敛的充要条件为:对任给的\(\varepsilon\),总存在某正整数\(N\),使得当\(n>N\)时,对一切\(x \in D\)和一切正整数\(p\),都有:

\[|u_{n+1}(x)+u_{n+2}(x)+\cdots u_{n+p}(x)|<\varepsilon\]

带有三角函数的级数通常是不一致收敛的

\(\exists\) \(\varepsilon=?\),使得对任意正整数\(N\),取\(n_0=N+1\)\(p_0=n_0\),对\(x_0=?\),都有:

\[|u_{n_0+1}(x_0)+u_{n_0+2}(x_0)+\cdots u_{n_0+p_0}(x_0)| \geq \varepsilon\]
\[\begin{align} |u_{n_0+1}(x_0)+u_{n_0+2}(x_0)+\cdots u_{n_0+p}(x_0)|=|\frac{1}{1+n_0}sin(n_0+1) x_0 + \frac{1}{2+n_0}sin(n_0+2) x_0 +\cdots +\frac{1}{p_0+n_0}sin(n_0+p_0) x_0|\nonumber \end{align}\]

我们想通过证明,上式大于一个最大数,从而证明其不一致收敛,因为三角函数有正有负,则需要函数在一个单调区间上来求值,在这里我们就取\(x_0=\frac{\frac{\pi}{2}}{2(n_0+1)}=\frac{\pi}{4(n_0+1)}\)

则有

\[\begin{align} &|\frac{1}{1+n_0}sin(n_0+1) x_0 + \frac{1}{2+n_0}sin(n_0+2) x_0 +\cdots +\frac{1}{p_0+n_0}sin(n_0+p_0) x_0|\nonumber\\ &= \frac{1}{1+n_0}sin(n_0+1) x_0 + \frac{1}{2+n_0}sin(n_0+2) x_0 +\cdots +\frac{1}{2n_0}sin(n_0+p_0) x_0\nonumber\\ &\geq n_0 \cdot \frac{1}{2n_0}(sin(n_0+1) x_0)\nonumber\\ &=\frac{\frac{\sqrt{2}}{2}}{2} \nonumber\\ &=\frac{\sqrt{2}}{4} \nonumber \end{align}\]

所以\(\exists\) \(\varepsilon=\frac{\sqrt{2}}{4}\),使得对任意正整数\(N\),取\(n_0=N+1\)\(p_0=n_0\),对\(x_0=\frac{\pi}{4(n_0+1)}\),都有:

\[|u_{n_0+1}(x_0)+u_{n_0+2}(x_0)+\cdots u_{n_0+p_0}(x_0)| \geq \varepsilon\]

所以不一致收敛

Question

求下列幂级数的收敛半径与收敛区域

\[\sum\frac{3^n+(-2)^n}{n}(x+1)^n\]

Note

\(a_n=\frac{3^n+(-2)^n}{n}\),则\(\lim_{n \rightarrow \infty}|\frac{a_{n+1}}{a_n}|\)=3,故收敛半径\(R=\frac{1}{3}\),故而\(-\frac{1}{3}< x+1 <\frac{1}{3}\),从而收敛区间为\((-\frac{4}{3},-\frac{2}{3}).\)

\(x=-\frac{4}{3}\)时,原级数可以化为

\[\sum\frac{3^n+(-2)^n}{n}(-\frac{1}{3})^n=\sum[(-1)^n\frac{1}{n}+\frac{(\frac{2}{3})^n}{n}]\]

对于级数\(\sum \frac{(\frac{2}{3})^n}{n}\),因为\(\lim_{n\rightarrow\infty}|[\frac{(\frac{2}{3})^{n+1}}{n+1}]/[\frac{(\frac{2}{3})^{n}}{n}]|=\frac{2}{3}<1\),故级数\(\sum \frac{(\frac{2}{3})^n}{n}\)收敛,又因为\(\sum (-1)^n \frac{1}{n}\)收敛,故\(x=-\frac{4}{3}\),原级数收敛。

\(x=-\frac{2}{3}\)时,原级数可以化为

\[\sum\frac{3^n+(-2)^n}{n}(\frac{1}{3})^n=\sum[\frac{1}{n}+\frac{(-\frac{2}{3})^n}{n}]\]

级数\(\sum \frac{(-\frac{2}{3})^n}{n}\)收敛,但是\(\sum \frac{1}{n}\)发散,故而\(x=-\frac{2}{3}\)时级数发散,从而收敛域为\([-\frac{4}{3},-\frac{2}{3})\).